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SOME ALTERNATIVE ESTIMATORS FOR A POPULATION MEAN 

Donald T. Searls, Westat Research Analysts, Inc. 

The problem considered in this paper is one 
that most samplers encounter early in their work 
with sample data. The problem can be illustrated 
by the question that a sampler frequently asks 
himself, particularly if he is 4rorking with rela- 
tively small samples. The question is, "What do 
I do with large or extreme observations in the 
sample ?" The sampler first attempts to answer 
this question by a careful review of the data to 
see if an outlier has somehow appeared or if in 
fact the offending observation or observations 
are actually true observations. This paper is 
concerned only with the latter case where the use 
of outlier theory would be both unrealistic and 
unstatistical. 

Suppose the data has been collected in or- 
der to obtain an estimate of the mean (g) of the 
sampled distribution. The types of distributions 
generally encountered in practical sampling situ- 
ations can be characterized by the following: 

a. Unimodality 
b. Positive skewness or symmetry 
c. Non -negative values. 

Unless the precise form of the distribution 
is known exactly, will probably be used as an 
estimate of the distribution mean. An occasional 
sample will contain one or more observations from 
the right tail of the distribution due to the 
sampling process. When this occurs, and the sam- 
ple size is small, will probably exceed g by a 
considerable amount. In this situation the client 
being a practical man is frequently quick to point 
out the fact that the one or more large observa- 
tions are unduly influencing the estimate of the 
mean. The argument that the procedure is unbias- 
ed falls on deaf ears. The client is not inter- 
ested in what happens in the long run - -he vents 
an estimate as close to as possible for this 
particular case. In fact he is apt to regard any 
difference between and as a bias. By this 
reasoning any sample estimate is biased unless it 
coincides with the parameter value. 

This is an interesting viewpoint since it 
points up the fact that merely because these 
"biases" tend to average out in the long run does 
not really imply any particular merit for the es- 
timator unless the estimates obtained are accumu- 
lated or manipulated in some fashion. 

The above leads to the using of mean - 
squared -error as a criterion for comparing esti- 
mators rather than using unbiasedness and variance. 
There are not always unique minimum mean- squared- 
error estimators nor is it always possible to de- 
termine the estimator but this does not pre- 
clude its use as a criterion for comparing alter- 
native estimators. 

Let us examine the estimator generally em- 
ployed both by statisticians and others in situ- 

ations of this type. More often than not the 
large observations are ignored (generally there is 
only one) and the sample mean is derived from the 
remaining observations. The question immediately 
arises: Is this practice tenable with sound sta- 
tistical theory? Surprisingly, the answer is a 
qualified yes. And in fact it appears that under 
proper conditions, if the observation was not ig- 
nored, it should have been. 

Part of the qualification is that there is 
some predetermined point t such that if an obser- 
vation is larger than this point it will be ig- 
nored. This point should be explicitly stated in 
editing instructions before the sample is drawn. 

This paper will not provide pat answers for 
the handling of large observations but it will 
develop results to indicate that some of the pro- 
cedures being employed should not necessarily be 
condemned and that rough guidelines can be deriv- 
ed for future use. Three procedures, in addition 
to the above, will be considered. 

The first estimator formalizes as follows: 
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The case where r = 0 would be rare but is includ- 
ed for completeness. 

For a given r > 1, can be regarded as a 

simple random sample of size r the truncated 
portion of the distribution function and as such 
it provides an unbiased estimate of the mean (µt) 
of the truncated distribution. Also r is dis- 
tributed as the binomial with parameters n and 
F(t) or p. Let q = 1 - p. 
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When t equal to the upper limit (b), 

MSEG1) = a 2/n . If -y1)) is positive as 

t approaches b, then must be less than 

a 2/n for some region of t. This turns out to be 

true. 
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If b = + the term (t - will 

dominate as t approaches b. Thus the first deriv- 
ative is positive as t approaches b. 

A more detailed proof is presented in (1), 
along with proofs for cases where b + . 

A second estimator that is sometimes used 
is one where the large observations are ignored 
but sample size is kept constant by replacing de- 
leted observations. 

r 
y (Yj < t) 

(r fixed) 

For any r, 3:2 behaves as the sample mean of 

the truncated distribution. 

= 

= at2 /r + (µ - µt)2 

The proof for y2 is to that for y1 

can be found in [1]. 

A third estimator can be formed by replacing 
all large observations with the value of the cut- 
off point t. 

3 - n 

r 
y + (n-r)t 

j=1 
(0 r < n) 

(yj t) 

where r is distributed as the binomial with param- 
eters n and p. 

E(53) = P + qt 

MsE(3) = [ate + q(t - µt)2] + t)2, 

where is the mean of the right truncated por- 

tion of the distribution. 

235 

(t - - - t)] 

The derivative is positive as t approaches 
b since the second term in brackets is approach- 
ing zero while the first term is approaching a 
positive constant. 

Figure 1 and table demonstrate the gain 
achieved for the nential distribution by the 
use of for var s values of t/µ . Table 2 

presents specifi characteristics for when 

optimum values of t are used. 

If a near optimum value of t were used for 

:3 

over half (56%) of the samples of size five 

would have one or more observations exceeding t. 
As the sample size increases this proportion ap- 
proaches 1. Correspondingly, the expected number 
of observations exceeding t increases from .75 
for samples of size five up to approximately 
for samples of size 500. The optimum point for t 
varies from about double the true mean up to five 
times the true mean over this range. 

The preceding results raise the question of 
whether or not conditions can be found such that 
one or more of the large observations can be arbi- 
trarily discarded. 

Consider the case where only the maximum 
sample observation is discarded. 

n- 1 

= n 1 

µm 

where 

(n 
1 1)2 2 + 2 + 

2n Cov(Y, 

MSE(54) a 2/n if 

(-1) 2 m2). 

For samples of size n = 2 equality holds for 
the exponential distribution and the strict ine- 
quality holds for the pareto. Table 3 presents 
results for the pareto distribution. 

In conclusion it can be stated that the de- 
letion of large observations from a sample may 
result in the use of an estimator with a smaller 
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mean - squared -error than the sample mean. Perhaps 
an even more important implication from the above 
results however is the possibility that even more 
dramatic gains can be achieved in the estimation 
of 2. 
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FiFigure 1. Comparison of MSE g p (y3) and in for the exponential 
distribution 



Table 1. 

Values 

Relative efficiencies (%) of for samples from the 
exponential distribution. 

Sample Size 
of t 5 10 100 

1 83.4 44.1 9.2 4.6 .9 

2 183.1 153.3 66.7 39.1 9.1 
3 140.5 138.0 120.6 104.2 49.9 
4 117.0 116.7 114.9 112.7 97.7 
5 107.2 107.2 106.9 106.7 104.7 
6 103.1 103.1 103.0 103.0 102.7 
7 101.3 101.3 101.3 101.3 101.3 
8 100.5 100.5 100.5 100.5 100.5 

9 100.2 100.2 100.2 100.2 100.2 

10 100.1 100.1 100.1 100.1 100.1 

Table 2. Exponential distribution; characteristics for 
when optimum values for t are used. 

Sample Values Exp. Exp. % of Relative 
size of t/µ no. > to samples eff. ( %) 

with one 
or more 
>to 

5 1.9 .75 55.5 184.9 
10 2.2 1.11 69.1 156.7 
50 3.2 2.04 87.5 121.3 

100 3.6 2.73 93.7 113.7 
500 4.9 3.72 96.3 104.7 

f(y) (0 < y<+ co) 

Table 3. Pareto distribution; with n = 2 . 

Value Value of Relative 
oof 

r2 
Efficiency 

( ) 
3 .964 250.0 
4 .947 197.5 

5 .938 150.0 

6 .931 137.5 
10 .918 118.8 

f(y) = a + 1) (a> 2) 

(1 <y < 
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